電子顯微鏡是根據電子光學原理,用電子束和電子透鏡代替光束和光學透鏡,使物質的細微結構在非常高的放大倍數下成像的儀器。
電子顯微鏡的分辨能力以它所能分辨的相鄰兩點的最小間距來表示。20世紀70年代,透射式電子顯微鏡的分辨率約為0.3奈米(人眼的分辨本領約為0.1毫米)。現在電子顯微鏡最大放大倍率超過300萬倍,而光學顯微鏡的最大放大倍率約為2000倍,所以通過電子顯微鏡就能直接觀察到某些重金屬的原子和晶體中排列整齊的原子點陣。
1931年,德國的克諾爾和魯斯卡,用冷陰極放電電子源和三個電子透鏡改裝了一台高壓示波器,並獲得了放大十幾倍的影像,證實了電子顯微鏡放大成像的可能性。1932年,經過魯斯卡的改進,電子顯微鏡的分辨能力達到了50奈米,約為當時光學顯微鏡分辨本領的十倍,於是電子顯微鏡開始受到人們的重視。
到了二十世紀40年代,美國的希爾用消像散器補償電子透鏡的旋轉不對稱性,使電子顯微鏡的分辨本領有了新的突破,逐步達到了現代水平。在中國,1958年研製成功透射式電子顯微鏡,其分辨本領為3奈米,1979年又製成分辨本領為0.3奈米的大型電子顯微鏡。
電子顯微鏡的分辨本領雖已遠勝於光學顯微鏡,但電子顯微鏡因需在真空條件下工作,所以很難觀察活的生物,而且電子束的照射也會使生物樣品受到輻照損傷。其他的問題,如電子槍亮度和電子透鏡質量的提高等問題也有待繼續研究。
分辨能力是電子顯微鏡的重要指標,它與透過樣品的電子束入射錐角和波長有關。可見光的波長約為300~700奈米,而電子束的波長與加速電壓有關。當加速電壓為50~100千伏時,電子束波長約為0.0053~0.0037奈米。由於電子束的波長遠遠小於可見光的波長,所以即使電子束的錐角僅為光學顯微鏡的1%,電子顯微鏡的分辨本領仍遠遠優於光學顯微鏡。
電子顯微鏡由鏡筒、真空系統和電源櫃三部分組成。鏡筒主要有電子槍、電子透鏡、樣品架、螢光屏和照相機構等部件,這些部件通常是自上而下地裝配成一個柱體;真空系統由機械真空泵、擴散泵和真空閥門等構成,並通過抽氣管道與鏡筒相聯接;電源櫃由高壓發生器、勵磁電流穩流器和各種調節控制單元組成。
電子透鏡是電子顯微鏡鏡筒中最重要的部件,它用一個對稱於鏡筒軸線的空間電場或磁場使電子軌跡向軸線彎曲形成聚焦,其作用與玻璃凸透鏡使光束聚焦的作用相似,所以稱為電子透鏡。現代電子顯微鏡大多采用電磁透鏡,由很穩定的直流勵磁電流通過帶極靴的線圈產生的強磁場使電子聚焦。
電子槍是由鎢絲熱陰極、柵極和陰極構成的部件。它能發射並形成速度均勻的電子束,所以加速電壓的穩定度要求不低於萬分之一。
電子顯微鏡按結構和用途可分為 透射式電子顯微鏡、掃描式電子顯微鏡、反射式電子顯微鏡和發射式電子顯微鏡等。
透射式電子顯微鏡常用於觀察那些用普通顯微鏡所不能分辨的細微物質結構;掃描式電子顯微鏡主要用於觀察固體表面的形貌,也能與X射線衍射儀或電子能譜儀相結合,構成電子微探針,用於物質成分分析;發射式電子顯微鏡用於自發射電子表面的研究。
投射式電子顯微鏡因電子束穿透樣品後,再用電子透鏡成像放大而得名。它的光路與光學顯微鏡相仿。在這種電子顯微鏡中,影像細節的對比度是由樣品的原子對電子束的散射形成的。樣品較薄或密度較低的部分,電子束散射較少,這樣就有較多的電子通過物鏡光欄,參與成像,在影像中顯得較亮。反之,樣品中較厚或較密的部分,在影像中則顯得較暗。如果樣品太厚或過密,則像的對比度就會惡化,甚至會因吸收電子束的能量而被損傷或破壞。
沒有留言:
張貼留言